Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus.

نویسندگان

  • Dmytro Isaev
  • Elena Isaeva
  • Tatiana Shatskih
  • Qian Zhao
  • Nicole C Smits
  • Nicholas W Shworak
  • Rustem Khazipov
  • Gregory L Holmes
چکیده

The extracellular membrane surface contains a substantial amount of negatively charged sialic acid residues. Some of the sialic acids are located close to the pore of voltage-gated channel, substantially influencing their gating properties. However, the role of sialylation of the extracellular membrane in modulation of neuronal and network activity remains primarily unknown. The level of sialylation is controlled by neuraminidase (NEU), the key enzyme that cleaves sialic acids. Here we show that NEU treatment causes a large depolarizing shift of voltage-gated sodium channel activation/inactivation and action potential (AP) threshold without any change in the resting membrane potential of hippocampal CA3 pyramidal neurons. Cleavage of sialic acids by NEU also reduced sensitivity of sodium channel gating and AP threshold to extracellular calcium. At the network level, exogenous NEU exerted powerful anticonvulsive action both in vitro and in acute and chronic in vivo models of epilepsy. In contrast, a NEU blocker (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid) dramatically reduced seizure threshold and aggravated hippocampal seizures. Thus, sialylation appears to be a powerful mechanism to control neuronal and network excitability. We propose that decreasing the amount of extracellular sialic acid residues can be a useful approach to reduce neuronal excitability and serve as a novel therapeutic approach in the treatment of seizures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Chronic Intracerebroventricluar Administration of Lipopolysaccharide on Connexin43 Protein Expression in Rat Hippocampus

Background: Hippocampal damages, which are accompanied by inflammation, are among the main causes of epilepsy acquisition. We previously reported that chronic intracerebroventricular (i.c.v.) injection of lipopolysaccharide (LPS) modulates epileptogenesis in rats. There is a network of gap junction channels in the hippocampus that contribute to epileptogenesis. Gap junction channels are formed ...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

The effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat

Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...

متن کامل

نقش گیرنده‌های نیکوتینی استیل کولین، پروتئین کیناز B و پروتئین کیناز Mζ بر اثر حفاظتی اسید رزمارینیک در مدل بیماری آلزایمر القا شده به وسیله‌ی بتا آمیلوئید (35-25) در موش صحرایی

Background and Objective: Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and results from the extracellular accumulation of b-amyloid peptides and the resulting neuronal dysfunction. In this study, the role of nicotinic acetylcholine receptors, protein kinase B (PKB) and protein kinase M (PKM) were evaluated in order to examine the mechanism of the protective effe...

متن کامل

The effect of silymarin on prevention of hippocampus neuronal damage in rats with temporal lob epilepsy

Background and Objective: Temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity of silymarin (SM), this study was undertaken to evaluate the preventive effect of this agent on structural changes in hippocampus of kainate-epileptic rats. Materia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 43  شماره 

صفحات  -

تاریخ انتشار 2007